STL download  for the belt driven adapters of the WMD16LV minimill and Nema23 

Please donate $1 to my paypal account if you use (parts of) my developed materials so I can continue to share nice stuff for you to download

CLICK on the URL to start the download of the corresponding STL file

DOWNLOADS Y-adapter (LEFT SIDE):

MINIMILL_BF16L CNC_Y_adapter belt driven 2023_04_23_V1 Jantec.nl MINIMILL_BF16L CNC_Y_adapter LID belt driven 2023_04_23_V1 Jantec.nl

 


 

DOWNLOADS X-adapter (FRONT SIDE):

MINIMILL_BF16L CNC_X_adapter belt driven 2023_04_23_V1 Jantec.nl MINIMILL_BF16L CNC_X_adapter LID belt driven 2023_04_23_V1 Jantec.nl


DOWNLOAD Z-adapter (TOP):

MINIMILL_BF16L CNC_Z_adapter belt driven 2023_04_23_V1 Jantec.nl

 

GOTO THE MINIMILL PAGE

Minimill CNC conversion WMD16LV X-axis adapter for NEMA23 and M3 teethed belt

NEW VERSION with debree screen:

You can 3dprint the entire bottom and debree screen with the risers for the stepper motor at once, as I did in red ABS at 270 degrees C

For this setup you need

  • 1 piece Nema23 56 length stepper motor with 6.35 mm axis
  • 1  piece 12-teethed M3 wheel with collar, hole dia 6.35 mm, 11 mm width
  • 1  piece 24-teethed M3 wheel with NO collar, hole dia 10 mm, 11 mm width
  • Teethed M3 belt , 9 mm wide and length 255 or 275 mm (need to check this)
  • 3d printed parts
  • M8 rings and nut

Here the connection is shown onto the X-axis/ leadscrew bearing holder with 2 M6 bolts.

And front lid:

And the Milling design for the base plate for CNC machining in aluminium should you prefer this.

The 3D print file for the debree cover and the stepper motor risers, to be placed on the aluminium milled base plate:

GOTO the Y axis adapter

GOTO the Z axis adapter

DOWNLOAD THE CNC ADAPTER DESIGNS  as STL

Please donate $1 to my paypal account if you use (parts of) my developed materials so I can continue to share nice stuff for you to download

Minimill CNC conversion WMD16LV Y-axis 3d printed adapter for NEMA23 and M3 teethed belt

The design for the Y-axis mounting plate for the Nema23 stepper  is shown below and can be 3dprinted or, as I will do after the printed part proves to fit well, CNC it in aluminium on my CNC Indymill router.

The Y-axis adapter proved to be the most difficult design.  It took me 15 trial prints before I got everyting fully optimized.  And I also wanted to have a debree screen with a removable lid, which took some energy to test this.  Also, the belt has to have a clean route where it sits between the wheel.

The physical data for this setup:

  • Nema23 stepper motor
  • 3d printed parts: a: Baseplate inclusing risers for motormount and shield; b: lid
  • Teethed wheel for the Nema23 8mm axle: 10mm wide, 24 teeth M3 with chest
  • Teethed wheel for the leadscrew 10mm axle: 10mm wide: 48 teeth M3 with chest, machined on the teethed inside 9mm depth with a  width of 33 mm diameter to fit the chest of the leadscrew bearing holder
  • The fitting belt is 9mm wide, 300 mm long and has 100 teeth (M3)

GOTO the MiniMill’s X-axis CNC Nema23 mounting plate

GOTO the MiniMill’s Z-axis CNC Nema23 mounting plate

FINAL DESIGN:

Machined the inner part out on the lathe so it will slide for about 9mm over the Y axis’ leadscrew bearing holder

And now the wheel can move over the bearing holder to the right
This saves 9mm mounting space and now the machined handwheel can be replaced, if so desired.  But the handwheel needs to be machined first, to get the dial off.

the small holes can be used to place the lid on the debree screen with small 2.5 mm dia screws  Or, you van leave the lid off and put a wheel on as I have done on the Z-axis.  You must machine the dial off the wheel so it gets thin enough to mount on the remaining M8 leadscrew-end.  A little part of the 10mm shaft will stick out  with my method to keep the handwheel centered.

GOTO the X axis adapter

GOTO the Z axis adapter

DOWNLOAD THE CNC ADAPTER DESIGNS  as STL

Please donate $1 to my paypal account if you use (parts of) my developed materials so I can continue to share nice stuff for you to download

3d Printers – overview

At the moment (2022-01) I have the following 3d printers up and running:

  1. Voron DIY 2.4 300x300x300 extremely fast ABS/ASA printer
  2. Twotrees Sapphire Pro ‘enclosed’ very fast ABS/ASA printer
  3. Prusa mini very good for PETG primarily
  4. I3 Prusa Bear DIY Fly-CDY-V2 with dual Z axes, 0.6mm nozzle for PLA/ PETG
  5. I3 Prusa Bear ‘plus’ DIY with dual magnetic carriages and sensorless Xhoming
  6. A30M Duet2wifi Geetech dual extruder switchable mono or dual head
  7. Delta G2S Duet2wifi Geetech single head speedprinter 0.8 mm nozzle
  8. Kingroon KP3 mini with full extension package (rails, extruder, firmware..)
  9. Flashforge adventurer 3 all-original almost never used
  10. Ender3pro with TT mini e3 V2.1 , workhorse with 0.6 mm nozzle for PETG
  11. Prusa mini clone (but I can’t tell the difference..) for PETG primarily
  12. E3D Toolchanger met 4xHemera DD’s
  13. Mini Monoprice Delta printer
Prusa mini clone

Triple mixing hotend for A30M

Next to the penta non-mixing hotend, I recently bought this mixing triple hotend, to experiment with it on the A30M.  It is not the same as the Geeetech original triple mixing hotend, however it does have some resemblance.

Obviously, this hotend requires 3 extruders via bowden tubes.  The extruders I have are all Chinese clones of the 1:3 geared bondtech extruders.

The 3 extruders will be placed on the top horizontal aluminium frame, right where they are originally placed.  In fact, I am rebuilding the machine like the A30M from Geeetech that has a mixing triple hotend.  But- mine will have the Duet2wifi motherboard instead.

Soon as I install this, I will upload pictures and the config files (and all tool files like tfree, etcetera for the three tools as well).

 

Hanging 3d printer

My last 3d printer I built just produced too much noise, mainly from changing the tools during multi-filament prints

Finally, I made a construction where the printer hangs in big elastic suspenders.  This took away any noise that was previously transferred to the wall, so no more problems with noises throughout the house.  Pfff…

My mini shop

One of the 2nd floor bedrooms was converted into my 3.5×2  meters mini in-house workshop… The garage is used for my larger machines like the lathes, milling- and welding machines, laser cutter et cetera…

FLY 407 Motherboard RRF3+ wifi + BTT 2.4 inch TFT + multi-extruder

2021-05-11

I got the Mellow Fly 407 board in today, and it now works awesome!

I hooked the Mellow dedicated wifi unit to EXP 1 and EXP2 and to the serial TFT connection, programmed the microSDcard offline on the PC with the files from the proposed Github site and it all went great!  (The little added user manual is very good, just follow the directions and it can’t go wrong!)

Burnt the board’s firmware first, then the firmware of the wifi esp module and after setting up the wifi with YAT via USB, I programmed the wifi settings.  Then, with the Duet’s WDC PC-remote console via wifi, I uploaded the FLY 407 motherboard with all the latest available firmware: RRF3.4 beta and the latest wifi- and DWC versions.

Then, I removed the serial connection between the TFT connection on the motherboard and the wifi module and plugged in the BTT 2.4 inch TFT at the same serial port.  Since there is only 1 tft port available, I use the same serial port as I used for programming the esp wifi module.  I already put the RRF3 firmware on the TFT unit.

Well, the results are awesome! On the TFT after connecting you see the extruder step from 0 to 1-2-3-4 and back to 0 so this all works very nice!

I must be honest here: I also tried the Mellow 7 inch screen but this is not yet really working as well to me as the little BTT screen IMHO.  The Fly screen is a lot bigger, though, and the Fly 7 inch TFT has great potential.  I know that it will also take some getting used to the FLY’s TFT screen layouts.  The access to the macro and gcode directory is nice, but since everything is placed differently than the PanelDue screens, it might just take some time to appreciate it more.

Geetech A30M first use

In mid-June 2020, I started using the Geeetech A30M desktop 3d printer.
The printer can print 2 colors mixed with 2 filament geared drive units on top of the frame and a fan for each feed to the combined hotend.

A few adjustments are needed on this printer if you really want to work well with it.
First of all, I had a lot of trouble with the standard noise from the 24 Volts fan under the bottom plate, which is supposed to provide cooling for the motherboard. This fan is always running at full power.
I put a controller in between with controls on the left side, through a drilled hole. I secured the controller with 2 tie-wraps through the cooling slots on the left side. The dial just comes through the case and you can hardly see it. Most motherboards I use don’t need a fan for cooling because they are placed freely in the open frame but the A30M has a closed case so a little air circulation is necessary. Plan is to add a thermostat control so the knob is no longer needed. Later. The controller is set to the position that there is a lot of air movement but without the whirring of the fan.

Second modification is the addition of a Geeetech 3d touch on the hotend. The bracket was included with the printer, suitable for both a thick inductive sensor and the 3d touch sensor. What’s nice is that the software (or firmware, if you will) as suitable from the factory for autoleveling. Do pay attention to the correct placement of the connectors, from the front view the brown and black wires should be mounted to the right.

The disadvantage is that the firmware from factory does not really work well with auto leveling. In the middle of the hotbed everything goes fine but with larger prints I noticed that the first layer was printed very differently, so everything kept coming loose. So now I work with manual leveling while automatic leveling is possible.

The hotbed is nice and big with a workable size of 320x320mm. The print height is 420mm.

The price was over 400 Euro, and the delivery was from Germany.

I recommend everyone to secure ALL and especially to include the block hook. My one was really not assembled properly. All threads were OK but all bolts were either too tight or not tight at all. I only found this out during the first test print. I stopped and checked everything. Pay special attention to the rollers of the hotbed. It is difficult to reach them but in my case the adjustment wheels were not set at all and did not rotate. The disadvantage of such a desktop printer is that you hardly have any space under the hotbed.
The vertical V-profiles were not mounted perpendicular to the upper profile. That is difficult to repair because everything is drilled through and bolted. I recommend installing corner stiffeners at the back in the top 2 corners. I have them on order and then they can go right on.

And… what some large printers have and the A30M does not: Additional stabilization rods to the front (or to the back, that is also possible) so that the vertical profiles cannot move. Now when you apply a little force there is about 2mm of play on it, despite the solid mounting to the desktop housing.

Voron 2.4 Core XY build

My experiences with CoreXY printers are excellent, so I chose a VORON for my home-built COREXY printer with a print size of 300x300x300 mm.

Developed from a large community, the VORON is one of the best and most reliable 3D printers.  And this printer just looks really good!

Via AliExpress, Banggood, Reichelt, aluminiumopmaat.nl and plexiglas.nl I ordered all the stuff, according to the bill of materials I could download from the VORON site.

I printed the PETG parts on the Prusa mini at 0.15 fine.

The ABS parts (red and black) were printed on the Twotrees Sapphire plus.  It took a lot of ‘tweeking’ before the ABS came out well but in the end I got a nice result!

Printed parts for the Voron 2.4 300In the end, rebuilding is not really self-building and it is more based on ordering and assembling than getting to work with the saw and drill yourself.  Also the necessary 8(!) linear rails of 350mm, bearings, gears, belts, motors, electronics and so on have been ordered and the rest of the necessary stuff has been printed (25-8-2020).

For the control part I have chosen one PI Raspberry PI 4B 4GB and two pieces of SKR 1.4 turbo motherboards, according to the VORON recommendation.

Building the Voron 2.4 with the afterburner Beta1 hotend combination is illustrated by the following pictures.

Gantry ready:

Gantry of my Voron 2.4 300Housing and skirts underside with Z-motors yet without the gantry mounted:

Frame of my Voron 2.4 300
Electronics positioning underneath my Voron 2.4 300

Below: The 9 mm drive belts of the 4 Z-axes placed:

Halfway the building phase of my Voron 2.4 300

And the assembled base plate with the rails and controls, power supplies and so on (printer turned over):

Cabling and electronics of my Voron 2.4 3000: 2xSKR1.4 turbo with Klipper, Raspberry PI and Octoprint with Klipper

We are still waiting for the bearings for the Alpha and Beta drives in the gantry.  These bearings are used to make a tension roller per 2 pieces.  I had originally bought idler bearings for this purpose, but the diameter of the collar of these bearings is just too large.

Too bad but then I have to work on the Raspberry PI4B in combination with 2 times SKR V1.4 turbo motherboards.  The PI will make a new config.bin via Klipper for the SKR V1.4 motherboards so the PI can drive both SKR boards at the same time.  On the main board will be Alpha and Beta and the extruder plus the extruder heater, on the other (Z) board the 4 Z-motors and bed heater.  By itself a Duet with expansion board could have been an option too, but the Voron designers made it with the PI, Klipper and 2 SKR boards.  And I try to stay as close to the design as possible . -)

Below: Threading the straps, no picture used.  Just start somewhere and you’ll end up right.  Oh yes, also changed the sensor in the config from NC to NO..

Below: In addition to the 24Volt 200 Watt hotbed nevertheless also added the 500 Watt 230V.  With only the 24V version it took more than 20 minutes to get to 110 degrees Celsius…

Old:

And new— no PID run done yet..)

Below: The steel plate is placed on the sticky magnet sheet.

Below: First print….  I had to search for the Z offset adjustment and the extruder turned the wrong way around.  Also the gantry leveling took some thought, you actually have to make the basic setting with a ruler, otherwise the leveling takes a long time.  Nice is that a bed mesh leveling is not necessary anymore, but of course it can be done.  You turn a home and because the nozzle always calibrates the Z on the mechanical Z endstop, and the gantry does all the leveling, you always have a good first layer.  Unless the bed warps but with such a thick plate that seems almost impossible. Just to be sure, I did include a bed_mesh profile in the config.g.  By the way I just used a 24 V aluminum hotbed as a base because my 8 mm 310×310 plate turned out to be a cut plate instead of sawn.   And a cut sheet turns out to be non-flat on the cut sides by default, unfortunately.  Flattening costs more than a new plate, maybe that will come sometime….

And with enclosure, camera and the TOP LED’s:

Afterword:

In practice, I fixed a few more minor flaws, including:

Extruder tuning.  The donor extruder turned out not to pick up the filament properly.
First I tried to put a ring in between the left side of the shaft, but then the nylon gear on the right side of the shaft gets tight and the housing can’t be closed completely anymore….
I ended up using a spare set of dual drive extruder gears and swapping the set of gears.  With that, the filament was properly aligned with the running path of the gears.  See the picture how it was at first:

Misaligned filament path in Afterburner extruder

Hotend tuning
After the PID runs of hotend and heated bed, my chosen assembly of the custom ED6 heater block, the heatbreak pipe and the cooling element turned out not to fit together properly.  The result was that when the filament was extracted, a thick piece was always stuck at the end.  This was caused by the heatbreak pipe not fitting tightly on the nozzle.  There should be no play between them.  I completely demounted the filament and screwed the heatbreak pipe 2 turns less into the cooling element with red threadlocker.  Let it harden for a day and then I assembled the rest.  By the way, I also mounted the teflon version of the heatbreak pipe in stead of the titanium version.  The tintanium version was to my experience a bit too stiff.  Or my filament was too old or inferior.  In any case, after the modification, everything works without problems.

Hotbed, TPU and ABS
To print TPU and ABS without brim or skirt without warping I bought a magnetic PEI steel plate with coarse profile.  It really works perfectly. Both ABS at 110 degrees sticks nicely and TPU at room temperature sticks nicely too.  And the removal is also without problems.  Occasionally I spray a little hairspray on the plate but I don’t think that lacquer is really necessary at all.  It is meant to make the removal easier.

Tension of the belts
I tried getting the belts at the same tension, this was not that easy.  Finally I ended up with a mechanical way of measuring tension after putting 1 at my desired tension and comparing this as reference with the other to be compared belts.  So, for the Alpha and Beta belts I first did a ‘good feeling’ setting and then I used my old trunk scale weight device to measure the tension when pulling the belt A. Then, I used the device to measure at the same place for B. And I repeated this for the 4 vertical belts.

Alignment
Aligning the machine is also a bit of a challenge…
You must assume that your frame is square and straight.  You have to check this thoroughly.  Both vertically, horizontally and diagonally.  Then you can adjust the gantry. Loosen and remove the A and B belts.  Or do the alignment BEFORE placing the belts.
Fix the horizontal position of the Gantry otherwise you can’t align at all. Place 4 equal distance blocks of about 10-15 cm under the sliders of the vertical linear rails on the lower 2020 profiles, in the 4 corners through which the gantry rests stably. I have placed position holders under all MGN9 vertical linear rails afterwards so that the rails cannot slide in the 20×20 V profile.  If you use ‘regular’ 20×20 extrusion profile you don’t have a problem because there is enough ‘meat’ left for attaching your rail to the profile.  With V-profile, the groove is a bit wider and it is very difficult to mount the rails neatly without tools in the groove.  My frame is of V-rail profile and the gantry of plain 2020 profile.
The alignment of the gantry I started at the back.  Loosening all screws a bit, including the screws of the convex connectors that hold the gantry to the linear rails.  By the way, I see some builders placing these screws with multiple spring washers.  I’m going to do that too…
At the rear of the gantry, push the gantry completely against the rear.  There should be no gap between the XY joints and the frame.  PS: Leave the endstops off for a while at this action!
While the gantry is sitting against the back, tighten the XY joints and the sliders of the X-axle as well. (the side of the endstops holder is temporarily secured with 2 screws)
Tighten the rear 2 gantry joints (with the convex surfaces) as well.  This fixes the rear position at right angles.
Carefully slide the gantry forward. This should be possible without any effort.  If not, check whether there is enough play (and if necessary loosen the screws) on the gantry joints at the front (with the convex surfaces).  If you still don’t have a free run to the front, your frame is not good or your vertical rails are not seated properly.  First check the correct positioning of your rails with your position tool (from the printed stock) and to be sure also unscrew the 4 screws on both front vertical rails.  Try again if the sliding of the gantry goes smoothly.  Still no good?  Then reverse the procedure and start at the front.  Try to set the gantry exactly level with the frame.
After adjusting: Test the alignment also halfway (vertically) and at the top!

error: Content is protected !!